Q=50q-(10+25q+q^2)

Simple and best practice solution for Q=50q-(10+25q+q^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Q=50q-(10+25q+q^2) equation:



=50Q-(10+25Q+Q^2)
We move all terms to the left:
-(50Q-(10+25Q+Q^2))=0
We calculate terms in parentheses: -(50Q-(10+25Q+Q^2)), so:
50Q-(10+25Q+Q^2)
determiningTheFunctionDomain -(10+25Q+Q^2)+50Q
We get rid of parentheses
-Q^2-25Q+50Q-10
We add all the numbers together, and all the variables
-1Q^2+25Q-10
Back to the equation:
-(-1Q^2+25Q-10)
We get rid of parentheses
1Q^2-25Q+10=0
We add all the numbers together, and all the variables
Q^2-25Q+10=0
a = 1; b = -25; c = +10;
Δ = b2-4ac
Δ = -252-4·1·10
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$
$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-3\sqrt{65}}{2*1}=\frac{25-3\sqrt{65}}{2} $
$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+3\sqrt{65}}{2*1}=\frac{25+3\sqrt{65}}{2} $

See similar equations:

| 3(2w-2)=7(3w+2) | | 6d+4=100 | | 1x-30x-9000=0,x= | | s/2–5=8 | | 18=3d+3 | | 2t+10=4t-2 | | 2t-10=4t-2 | | z/5+10=31 | | 2w^2-3w-15=5 | | |m+8|+8=23 | | 2(−3x+4)=11 | | -14+40=-2(x+2) | | (128-2b^2)=0 | | 10+2x/6=—1 | | -14+40=2(x+2) | | -6x-4=-7x+1 | | 5(4x+6)=-13+23 | | 6x+4x-30+90=360 | | 4/5x(3+8)=3 | | 125=5x+10 | | 21-5=23x-5 | | (121-a^2)=0 | | -5+-2q=-9 | | d/2-9=-7 | | 232=25x+57 | | 10g-6=76 | | 16=h/4+15 | | j/3+4=1 | | c/4-10=13 | | 6+2k=4k+3 | | 9m-6=-6-7m-m | | 54=19+5w |

Equations solver categories